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We consider the heating of a cylinder (0 __ r -< R, 0 _< z _< L), the 
upper end of which is subjected to radiative heating, whiIe the re- 
maining part of the surface exchanges heat with the surrounding medi- 
um in accordance with Newton's law. 

The problem can be formuIated mathemat ica l ly  as follows: 
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Here a is the coefficient of thermal  diffusivity, H is the relative 
emission coefficient,  T l is the temperature  of the radiator, T o is the 
initial temperature  of the body, ~(r, z, r )  is the temperature  of the 
surrounding medium, and h and h 1 are the relative coefficients of heat 
transfer for the corresponding surfaces. 

The Laplace transformation reduces the boundary-value problem 
(1) to the following boundary-value problem in the transformed vari- 

ables: 
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We multiply Eq. (2) by Jo0tnr/R)dr and integrate from 0 to R. The 
boundary-value problem (2) becomes 
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The functions J0(Pnr/R) are the eigenfunctions of the boundary- 
value problem 

The eigenvalues are defined by tile equation 
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Without loss of generality we can set 
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The solution of (3) can be arranged in the form 
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Here 7n = (g~/R2 + P/a)l/2 and cV(7n) = 7uSiaTn L + hichYnL. 
It was shown in [1] that vl(z, p) denotes the Fourier coefficients 

for the expansion of v(r, z, p) in an orthonormalized system of eigen- 
functions 

t R ~ 
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is the norm of the eigenfunctions. 
Then the solution of the boundary-value problem for the trans- 

formed variables is 
co 
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The final solution of the problem in the original variables is ob- 
tained by applying the inverse Laplace transformation 

tr~i~ 
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If  we assume that we can interchange the order of integration and 
summation,  taking (6) into account,  we obtain the following for the 

definition of the original of vl(z, p): 
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The denominator of the integrand in (9) has an infinite set of poles 
Sm (m = 0,1,  2 . . . .  ); so = 0 and all the remaining roots are defined by 

the equation 

etg v = v / (Lh~), v = ~ ( s /  a) '/" L �9 (10) 

By the theorem on expansion in the transformed variables [2], the 
original of the integrand in (9) is equal to the sum of the residues at 
all the poles 
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We can find the original of the expression 
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As before, putting s = a?'~, we have 
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The denominator of the integrand in (3_2) has the same poles as 
the denominator of the integrand in (9). Thus we can write 
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The last term in (5) is the product of two transformed variables. 
The original is determined through the application of the theorem on 
the mult ipl icat ion of transforms and can be written in the form 
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We find the original of gOa(p)g(p), where 

[B'L/,(Ix n) hBJo(~n)]/hehTn(L--z) 

q)~ (P) = t ~ ':n~' .I ~ "" 

We have 

t -aP'n=~ / R ~ (~r 
~f a (~) = ~ e - - , ,  [sR ~-& ( ~ )  - -  

if--Go, 

es-c 
- -  halXnJo ([Xn) l ch [ ] / 's-~ (L - -  z)l ~ ds . ( i s )  

As before, the integral in (15) is equal to the sum of the residues 
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Consider the particular case in which the base of the cylinder is 
thermally insulated. This corresponds to the case in which the con- 
dition B i = hlL tends to zero. 

Then the roots of (10) are u m = rr(m - 1 )  (m = 1 , 2 , . . . ) ,  and so 

lim A m  
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Taking note of this, it is easy to see that, as B i "-" 0, 

~F1 (x) = 1G ('c) = ~ga (~) - + 0 .  (19) 

In this case, the temperature  field can be written as 
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In (20), the resulting nondimensional radiation density ~(r, L, r) 
is an unknown quantity and the temperature  field may be formally 
represented in terms of it. As in the one-dimensional  case[a] ,  putting 
z = L in (20), the problem can be reduced to a nonlinear integral 
equation for the resulting radiation density ~(r, L, r)  which can be put 
in the following form: 
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oo 
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X ~a=l J1 (Ixn) exp (--  x n ( ,  - -  t)) dt • 
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(21) 

fi = T{ ~ / ( T 1 4 -  To4), 5' = To 4 / ( T 1 4 -  To4), rio ~ NR ~. 

The integral equation (21) describes the heating of the surface 

z = L of the cylinder. The numerical solution is obtained by Newton's 

iteration method [4] . 

The numerical solution was arrived at as follows: the integral 

with respect to the space coordinate was divided into a finite sum by 
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Gauss's quadrature  formula,  and the in tegra l  with respect  to t i m e  was 

d iv ided  into a f in i te  sum by the r ec t ang l e  formula .  Thus ,  the t empera ture  

f ie ld  6(r, z, r)  was def ined after the values  of the resul t ing f lux density 

at  the surface z = L for any instant  of t i m e  were found as a result  of 

solving (21). 

The relat ionship between the nondimensionaI  t empera tu re  of the 
surface z = L and the  Fourier number for various radia l  sections with 

an i n i t i a l  cyl inder  t empera tu re  of To = 293 ~ K is shown in Fig. 1. 

The  relat ionship between the nondimensional  t empera tu re  of the 

t he rma l ly  insula ted base z = 0 of the cyl inder  and the nondimensional  

radius for various Fourier values and B i = 1 is shown in Fig. 2 for an 

i n i t i a l  t empera tu re  of To = 293 ~ K. The ca lcu la t ions  Were m a d e  for 

the fol lowing data:  R = 0.12 m, L = 0.015 m, a = 3.3 �9 10"3mZ/hr, 
H = 4.9 * 10 -9 dega/m.  
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