UNSTEADY RADIATIVE HEATING OF A CYLINDRICAL BODY
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We consider the heating of a cylinder (0 =r =R, 0 = z = L), the

upper end of which is subjected to radiative heating, while the re-

maining part of the surface exchanges heat with the surrounding medi-

um in accordance with Newton's law.
The problem can be formulated mathematically as follows:
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Here a is the coefficient of thermal diffusivity, H is the relative
emission coefficient, Tj is the temperature of the radiator, Ty is the
initial temperature of the body, fr,z, T) is the temperature of the

surrounding medium, and h and h; are the relative coefficients of heat

transfer for the corresponding surfaces,
The Laplace transformation reduces the boundary-value problem
(1) to the following boundary-value problem in the transformed vari-

ables:
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We multiply Eq. (2) by Jo(kpr/R)dr and integrate from 0 to R. The
boundary-value problem (2) becomes
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The functions Jo(kpr/R) are the eigenfunctions of the boundary-
value problem
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The eigenvalues are defined by the equation
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Without loss of generality we can set »
f(ryz, o) = f(7) = Ty — kv.
The solution of (3) can be arranged in the form
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Here y, = (/8% + P/a)/? and w(yy) = yyshyp L+ hychypl.

It was shown in [1] that v(z, p) denotes the Fourier coefficients
for the expansion of v(r, z,p) in an orthonormalized system of eigen-

functions
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is the norm of the eigenfunctions.
Then the solution of the boundary-value problem for the trans-
formed variables is
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The final solution of the problem in the original variables is ob-
tained by applying the inverse Laplace transformation
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If we assume that we can interchange the order of integration and
summation, taking (6) into account, we obtain the following for the
definition of the original of v(z, p):
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We put s = ayzn and obtain
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The denominator of the integrand in (9) has an infinite set of poles

sjm (m=0,1,2,...) so =0 and all the remaining roots are defined by
the equation
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By the theorem on expansion in the transformed variables [2], the
original of the integrand in (9) is equal to the sum of the residues at
all the poles
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We can find the original of the expression
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The denominator of the integrand in (12) has the same poles as
the denominator of the integrand in (9). Thus we can write
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The last term in (5) is the product of two transformed variables.
The original is determined through the application of the theorem on
the multiplication of transforms and can be written in the form
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As before, the integral in (15) is equal to the sum of the residues
at all the poles s, (m =0,1,2,...), and so

—aptT/ 12 r

1#HR 0 (1n) —

\}"3 (T) = — g
—a 2 A 2T 1 (W) / (B L)+
m==1

A+ ARy ()] €08 VL (1 — 2/ L) e‘L} : (16)

Then

o

Pz (p) F(p)=\¥a(v—12)j(t)dt.
d

The original of the second term in (5) is defined by
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Consider the particular case in which the base of the cylinder is
thermally insulated. This corresponds to the case in which the con-
dition B; = IyL tends to zero.

Then the roots of (10) are v, = 1(m ~1) (m = 1,2,.. .), and so
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Taking note of this, it is easy to see that, as By >0,
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In this case, the temperature field can be written as
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In (20), the resulting nondimensional radiation density o(r, L, )
is an unknown quantity and the temperature field may be formally
represented in terms of it, As in the one-dimensional case[8], putting
z = L in (20), the problem can be reduced to a nonlinear integral
equation for the resulting radiation density ¢(r, L, T) which can be put
in the following form:

kR2 2
? (ps T):B—T{1—kr/To+m,~o[(1_p2)+H_h:I~

k
— g 3 AR o () exp (— 7 +

Z.
n=1 "
T

+nog[1+2§]exp<—ym<r—z»} x

0 ne=]
X E}l%’% exp (— o (v — 1) dt X
AT PATAY YO da}“ - @1)
1]

Here
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The integral equation (21) describes the heating of the surface
z = L of the cylinder. The numerical solution is obtained by Newton's
iteration method [4] .

The numerical solution was arrived at as follows: the integral
with respect to the space coordinate was divided into a finite sum by
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Gauss's quadrature formula, and the integral with respect to time was
divided into a finite sum by the rectangle formula. Thus, the temperature
field &r, z, ) was defined after the values of the resulting flux density
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at the surface z = L for any instant of time were found as a result of
solving (21).

The relationship between the nondimensional temperature of the
surface z = L and the Fourier number for various radial sections with
an initial cylinder temperature of Ty = 293" K is shown in Fig. 1.

The relationship between the nondimensional temperature of the
thermally insulated base z =0 of the cylinder and the nondimensional
radius for various Fourier values and B; = 1 is shown in Fig. 2 for an
initial temperature of Ty = 293" K. The calculations were made for
the following data: R=0.12 m, L =0.015 m, ¢ = 3.3 » 10"?m%/Hr,
H=4,9"10"° deg3/m.
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